
Making Headways: An Analysis of Smart Cards and Bus Dwell Time in Los Angeles 1 

 2 

 3 

 4 

Daniel B. Shockley  5 
University of California, Los Angeles 6 

(Presently: Fehr & Peers)  7 

90 Sherwood Way, Walnut Creek, CA 94597 8 

Phone: (925) 285-9279; Email: dbcshockley@gmail.com 9 

 10 

Julia Salinas 11 
Los Angeles Metropolitan Transportation Authority (Metro)  12 

1 Gateway Plaza 13 

Los Angeles, CA 90012  14 

Phone: (213) 922-7413; Email: salinasju@metro.net 15 

 16 

Brian D. Taylor  17 
The Lewis Center for Regional Policy Studies 18 

UCLA Luskin School of School of Public Affairs 19 

3320 Public Affairs Building 20 

Los Angeles, CA 90095-1656  21 

Phone: (310) 903-3228; Fax: (310) 206-5566; Email: btaylor@ucla.edu  22 

 23 

 24 

Word Count: 6,003 words text + 4 tables x 250 words (each) = 7,003 words 25 

 26 

 27 

 28 

 29 

 30 

 31 

Submission Date: August 1st, 2015  32 



Shockley, Salinas, Taylor  2 

 

ABSTRACT 1 
This report provides an analysis of smart card fare payment systems and their relationship to dwell 2 

time of Los Angeles Metropolitan Transportation Authority (Metro) buses. First, the primary 3 

determinants of dwell time are discussed through a review of existing literature and research. Then, 4 

I use data collected from automatic passenger counter (APC) and automatic fare payment (AFC) 5 

systems to estimate a regression model of dwell time with Metro’s smart card fare payment system 6 

relative to other factors. Variables such as passenger boarding and alighting, wheelchairs, bicycles, 7 

vehicle configuration, and service type are also examined and compared to the dependent variable. 8 

An ordinary least squares regression model estimated with these variables explains 45 9 

percent of the variance in dwell time. Statistically significant coefficients show that smart cards 10 

contribute roughly two seconds per person, while cash or other media contribute about four 11 

seconds. Using a smart card to purchase a pass or stored value at the farebox contributed about 12 

eight seconds. While smart cards contribute less to dwell time than other forms of fare payment, 13 

they are not the strongest determinant overall. An articulated bus, for example, reduces dwell time 14 

by three seconds on average, and as much as 13 seconds in crowded conditions; similarly, 15 

wheelchair boarding and alighting add as much as 35 seconds. These findings suggest that smart 16 

cards can be instrumental in managing delay at stops, but are best used with other strategies. 17 

 18 

 19 

 20 

Keywords: Transit Data, Big Data, Public Transportation, Data Analysis  21 
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INTRODUCTION 1 
Proponents of electronic ticketing systems claim that smart cards such as Metro’s Transit Access 2 

Pass (TAP) can decrease the amount of time transit vehicles spend at stops while processing 3 

boarding passengers, or “dwell time.” Because of many factors – an abundance of passengers, 4 

Americans with Disabilities Act (ADA) requirements, or congestion – dwell time can vary 5 

considerably. Long dwell times can degrade schedule adherence, cause delays, and cultivate a 6 

negative perception of transit as slow and unreliable. Long dwell times also contribute to longer 7 

runtimes, which increase the cost of service because more buses are required to maintain consistent 8 

headways. While a given amount of dwell time is accounted for in scheduling, transit agencies are 9 

very concerned with reducing the variance in dwell time to the extent possible because the 10 

marginal cost of extra transit service is very high, particularly during peak hours. 11 

Although it is just one of the many aspects that determine the length of dwell times, 12 

electronic fare payment is thought to help schedule adherence by streamlining fare collection. In 13 

this way, TAP cards could possibly reduce the amount of time each person spends paying their 14 

fare. All things being equal, a passenger may save time by simply touching his or her TAP card to 15 

a validator rather than sliding dollar bills and coins into the fare box. Despite the fact that even the 16 

longest time spent paying fare may amount to a quarter of a minute, multiplying a few seconds of 17 

time savings per patron over hundreds of bus runs by thousands of stops serving tens of thousands 18 

of passengers could contribute a great deal to schedule adherence, service quality, and travel times. 19 

The objective of this research is to examine the effect of TAP card usage on bus dwell 20 

times. I hypothesize that higher ratios of TAP cards to cash fare payments per stop will result in 21 

shorter dwell times overall because of the reduced fare processing times per person with TAP. My 22 

analysis relies on a number of tests conducted on automatically generated data, and indeed finds 23 

statistically significant reductions in bus dwell time associated with higher TAP card usage. Using 24 

linear regression analysis to statistically control for other factors known to influence dwell times, 25 

I find that fares paid with a TAP card contribute less to dwell time than other, non-TAP 26 

transactions, ceteris paribus.  27 

However, the influence of TAP card usage on dwell times is not as strong as for other 28 

factors analyzed in my model.  In addition, I observe that the effect of TAP card usage on dwell 29 

times appears to erode appreciably in crowded conditions.  In other words, if reducing dwell times 30 

were the only, or even the primary, goal of implementing TAP cards – which is decidedly not the 31 

case – there are likely more cost-effective ways to reduce dwell times – such as all-door boarding 32 

at high-volume stops and stations.  33 

 34 

CONTEXT AND PRIOR WORK 35 
Researchers have identified a litany of factors that can influence the variability of dwell time, and 36 

as a result the policies, procedures, and even transit vehicles have changed over time to reduce 37 

delay at stops. Before the literature on the determinants of dwell time is examined, I first define 38 

what dwell time is and then place it conceptually in the context of bus transit route capacity. Next, 39 

I define the determinants of dwell time, and then explore relevant research findings for each. 40 

Transit agency staff often regard dwell time as a factor of delay that is most within their 41 

influence, so there is a well-developed literature on the factors that most affect dwell time and 42 

dwell time variance. Accordingly, I draw on this work in developing my findings outlined later in 43 

the report, as well as in developing my research methodology. However, analysis using 44 

automatically generated data is relatively new, so I could find only a few articles that analyzed 45 

extremely large datasets on dwell times. Thus, beyond its immediate relevance for Metro, this 46 
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research also seeks to fill a gap in the literature concerning the role of smart cards in dwell time 1 

variability; I do this by testing a process for combining two datasets that do not have a pre-defined 2 

relationship, which I explain further in the methodology section. 3 

Definition of Dwell Time 4 
The Transit Capacity and Quality of Service Manual (TCQM), published by the Transit 5 

Cooperative Research Program (TCRP) offers the definition of dwell time as “the amount of time 6 

a transit vehicle spends at stops and stations serving passenger movements” (1) as well as the time 7 

from the beginning of this sequence of movements to the end: bus arrives at stop, doors open, 8 

passengers embark/disembark, doors close, and bus departure (2).  9 

According to the TCQM, dwell time is a function of passenger volume, fare payment 10 

method, vehicle type and size, and circulation of passengers within the vehicle (3). Within the 11 

realm of passenger activity, fare collection is a major determinant of dwell time (4). However, the 12 

role of smart cards is not mentioned explicitly and the strength of the relationship between their 13 

use and dwell times is not estimated. 14 

While past dwell time studies were carried out through manual observation, (5) advances 15 

in automatic vehicle location (AVL) and automatic passenger counter (APC) technologies enable 16 

researchers to leverage vast amounts of data to analyze many thousands of dwell time observations, 17 

along with other variables, for more nuanced analyses.  18 

Passenger Volumes and Load 19 
Many researchers have proven the correlation between passenger volume and dwell time. 20 

Milkovits (6), Lin and Wilson (7), Rajbhandari, Chien, and Daniel (8), and Deuker, et al. (9), 21 

estimate a model for the dwell time of transit vehicles based on passenger activity. In addition to 22 

finding a positive correlation between passenger volumes and dwell times, all three found that that 23 

existing vehicle passenger load factors prior to arriving at the stop are correlated with longer than 24 

normal dwell times. 25 

Service Type 26 
Some research has shown that dwell times tend to differ based on whether the type of service was 27 

local (makes frequent stops serving only one or two passengers at each) or a limited-stop service 28 

(sometimes called “express” or “rapid” service, which makes fewer stops but serves more people 29 

at each, in order to move more quickly). Fernández, et al. (10) calculated a dwell time model based 30 

on observations of the bus transit network in Santiago, Chile. They found that trunk lines operating 31 

with high demand, low-floor vehicles, and less frequent stops, boarding time per person increases 32 

when there are more than 15 people in line. On feeder services, the boarding time is slower, and if 33 

there are many people, the boarding time slows even further. The differences between limited-stop 34 

express routes and local routes with many stops are accounted for in this research by examining 35 

the two different types of bus service separately. 36 

Vehicle Configuration and Passenger Circulation 37 
Configuration of the transit vehicle itself can allow for easier passenger movement in times of 38 

crowding thereby allowing patrons to board the bus more quickly. Daamen, et al. (11) and 39 

Fernández, et al. (12) conducted live experiments using a mock transit vehicle and platform. They 40 

found that dwell times associated with passenger crowding were correlated with door size and also 41 

whether or not the passenger had luggage. Fernández, et al. found that, in almost every case, wider 42 
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doors had a significant effect on reducing boarding and alighting times; with wider doors, platform 1 

height had a very small effect on boarding and alighting times (13). Deuker, et al., also found that 2 

low-floor busses had shorter dwell times, ceteris paribus (14).  3 

Aashtiani and Iravani (15) focused on how the layout of the transit vehicle could improve 4 

passenger circulation and reduce crowding on the vehicle. The models they developed successfully 5 

estimated bus dwell times by accounting for both the design of the bus and in-vehicle passenger 6 

congestion, supporting the notion that dwell times are affected by not only passenger movement, 7 

but also by existing passenger loads prior to the stop. Larger vehicles with more doors were also 8 

found to deal with passenger congestion more effectively. 9 

Fare Payment Procedures 10 
Generally, paying with cash is the slowest method of all fare payment procedures because of the 11 

time it takes to assemble the correct amount of money and then to insert it into the farebox (16). It 12 

is also one of the dwell time determinants that is most within control of a transit agency (17). Until 13 

recently, non-cash fare payments were either a proof-of-payment system wherein customers 14 

bought a fare before entering the bus, or “flash passes” that allowed a customer to board after the 15 

driver visually inspects the pass. Now, new technologies allow for smart cards that can store a 16 

variety of passes and cash value to pay for a trip. Theoretically, this could enable passengers to 17 

board the bus faster than by paying in cash. Research concerning the relationship between smart 18 

cards and dwell is relatively new because data has only recently become available. However, a 19 

small number of existing studies attempt to quantify it. 20 

First, the TCQM reports that, based on manual observations, the average service time 21 

involving a smart card is 3.5 seconds, whereas paying cash for the fare is 4.0 seconds (18). A 22 

shorter processing time per passenger implies that the higher smart card usage would result in a 23 

shorter dwell time. Iseki et al. (19) undertook a meta-analysis of the cost-benefit reports from three 24 

transit agencies in the United States that are implementing smart card fare payment systems. The 25 

analysis was concerned with quantifying some of the often-reported but mostly unquantified 26 

benefits of smart cards, including decreased fare payment time. The authors found that fare-27 

processing time was reported to be a definitive benefit of smart card systems, and in particular 28 

discovered that Metro experienced an improved average fare processing time of 2.27 seconds 29 

compared to 3.07 seconds for a non-smart card transaction (20).  30 

Fernández, et al. found that fare payment methods had a significant effect on dwell times, 31 

but the effect was smaller than door size. On-board smart card payment reduced times by 10 to 35 32 

percent while off-board pre-payment (proof-of-purchase) reduced boarding times by 25 to 45 33 

percent (21). Milkovits (22) conducted a study to model the determinants of dwell time and their 34 

significance using automatically generated bus transit data. Among other factors, he modeled the 35 

role of smart cards specifically. His findings indicate that the time savings difference in using 36 

smart media fare cards over magnetic stripe cards is only significant when buses are not crowded 37 

due to standing passengers restricting prompt boarding. 38 

To summarize, prior work has found that passenger volumes, service type, vehicle 39 

configuration, and fare payment procedures all have important roles in determining the length and 40 

variability of bus dwell time. The relative influence of smart cards, however, has not been 41 

investigated in much detail. Additionally, the use of automatically-generated transit data are just 42 

beginning to allow for rigorous statistical analyses with very large sample sizes. Drawing on the 43 

research literature to inform the selection of variables and methodology for analysis of large, 44 

computer generated data, I attempt in this analysis to fill the gap of knowledge regarding smart 45 



Shockley, Salinas, Taylor  6 

 

card systems and their effects on dwell time. My data pre-processing, variable construction, and 1 

calculations rely extensively on the prior work discussed in this section. 2 

 3 

METHODOLOGY 4 
To conduct this research I use transit data generated from on-board systems to estimate a regression 5 

of Metro bus dwell times, with the goal of determining the effect of smart card fare collection 6 

relative to other factors. By using ordinary least squares regression to statistically control for a 7 

wide array of factors thought to affect dwell times – rather than examining TAP card usage 8 

irrespective of these other factors – I am able to leverage massive volumes of available data to 9 

estimate the independent effect of TAP card usage on dwell times, and easily attain statistically 10 

significant findings.  11 

The data provided by Metro are very rich, and allows for a range of controls to account for 12 

the many other factors that influence dwell time. The trade-off, however, for such a large sample 13 

size is a lack of fidelity associated with malfunctioning hardware. Accounting for this required 14 

numerous pre-processing steps. Along with a description of the data itself, this section provides 15 

the justification for route and sample size, exclusions, pre-processing, and variable selection. 16 

Data Sources 17 
Metro provided Universal Farebox System (UFS) and Automatic Passenger Counter (APC) data 18 

from March 3 to March 16, 2014. March was selected because of the relatively few holidays and 19 

special service days during that time. Because prior work suggests that limited-stop services have 20 

different dwell times than local services (23), two contrasting Metro bus lines were selected for 21 

analysis: a limited-service, low ridership neighborhood route (Local Route 120) and a high-22 

volume, high frequency rapid route (Rapid Route 720).  23 

The two primary sources of information are the Automatic Passenger Counter (APC) 24 

system and Unified Farebox System (UFS). The APC records the number of passengers who board 25 

and alight from the bus at a given stop and the number of passengers onboard the bus after it 26 

departs from a stop. The APC also contains information about the physical characteristics of the 27 

vehicle such as number of seats, direction of travel, and the geographic coordinates of the bus at 28 

each stop. The UFS records fare box transactions, including TAP card and cash payments. 29 

Additionally, bus operators use it to record some non-fare payment activity such as bicycle and 30 

wheelchair loadings. While the UFS automatically generates fare payment records when they are 31 

received, the operator is responsible for noting all other records in a timely fashion. However, as 32 

with any system dependent on human action, this does not always occur as it should. Finally, while 33 

cash payments are recognized by the system, it cannot determine which fare the cash was for until 34 

the operator classifies it. For example, if a passenger pays the Senior/Disabled fare of 75 cents, the 35 

UFS will not recognize it as such until the transaction is classified “S/D Fare” by the operator. 36 

Otherwise, it remains unclassified.  37 

The TAP card data contain information about the type of fare media used and the status of 38 

the transaction, which could be either a “sale” or “use” depending on whether the passenger was 39 

purchasing a card with pass or fare while boarding or expending a fare already stored on the card. 40 

It is important to note that fare products such as day passes can be purchased from the fare box on 41 

a TAP card. It is possible, and perhaps likely, that such a transaction may take longer than simply 42 

using the TAP card. Fortunately, these transactions are recorded separately in the data. 43 

Because the UFS and APC systems are not explicitly linked, there are significant obstacles 44 

to relating them. Without a shared key index, there is no direct way to associate a given APC 45 

record with a UFS record. Dwell time and fare payment information were thus joined on the basis 46 
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of date and time, using vehicle identification number as a control to prevent the possibility of two 1 

records being matched temporally, but not geographically. If a fare record was generated between 2 

the dwell time of a given stop, and the vehicle ID number is a match, those records are related in 3 

my data. 4 

The lack of direct connection also gives rise to the possibility that their clocks are not 5 

synchronized. While the APC derives the time from the global position system (GPS), the UFS is 6 

updated only when its data are downloaded at the bus facility, which is scheduled to happen nightly 7 

but may not always occur. Since the UFS clock is not updated throughout the day, it may slowly 8 

fall out of line with the APC. Adding further uncertainty is the fact that the computer that stores 9 

the UFS data and updates the clock may itself be incorrect. If the time is not consistent across the 10 

APC and UFS, then their data may be incorrectly associated by my methodology. A time 11 

differential could be calculated to account for this, however if the system clocks are 12 

unsynchronized it would be on a bus-by-bus and day-by-day basis. Systematic differentials for the 13 

entire sample would be impossible to estimate from manual observation because the data are just 14 

over a year old at the time of this writing. 15 

Extending the time frame used for establishing a relationship between dwell time and fare 16 

payment could help to account for clock-related discrepancies. Also, UFS, wheelchair, or bicycle 17 

records may be created after the bus operator closes the doors, meaning that they are not clearly 18 

associated with a stop because the time stamp falls outside of the dwell time. Many UFS records 19 

rely on the operator to manually enter data, so this may occur if the operator closes the doors before 20 

all the passengers completed boarding; or if the operator tallies a bicycle before or after cycling 21 

the doors; or if the operator tallies a wheelchair before or after cycling the doors. In order to account 22 

these situations, a grace period of fifteen seconds after the door closed was added to each dwell 23 

time observation. Then, a fare box, bicycle, or wheelchair record that is created between the door 24 

opening time and the end of the grace period are related to that stop. An additional variable was 25 

created that counts the number of fare records (not including bicycles or wheelchairs) that occur 26 

between the door closing time and the grace period to account for the effect of passengers in the 27 

process of paying fare after the doors have closed. 28 

Metro’s Service Performance Analysis (SPA) group purged the data of most erroneous 29 

records before releasing it to me. This purge included consolidating instances of APC records 30 

where the doors cycled in rapid succession and removing records that were obviously created by 31 

malfunctioning hardware. I was not provided with the raw data, so it is not possible to determine 32 

how these changes may have affected the result of the analyses.  33 

Finally, the APC dwell time calculation I use in this study is not consistent with the 34 

literature; in my data, dwell time is the difference between the doors fully opening and the doors 35 

fully closing, while the TCQM definition includes arrival and departure times. The Automatic 36 

Vehicle Location (AVL) coordinates embedded in the APC data are not precise enough to measure 37 

those movements. However, because this research is concerned with the effect that smart cards 38 

have on dwell time as it relates to passenger activity, and given that decelerating into and 39 

accelerating out of stop is not thought to be affected by smart card use, I find this discrepancy 40 

acceptable. 41 

Exclusions 42 
Dwell time records with a passenger service time below a half-second were excluded from my 43 

sample to account for malfunctioning APC units. To further account for malfunctioning equipment 44 

or misreported data, records of stops with dwell times of zero were also excluded. Often, these 45 

records had no indication of boarding or alighting passengers. 46 
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Sometimes, buses may wait with the door open at layover or terminal stops, leading to a 1 

longer dwell time not associated with passenger activity. Therefore any record generated at a 2 

known time point, layover, or terminal stop was deleted. 3 

Remaining outliers were excluded by deleting records with a dwell time longer than 180 4 

seconds (3 minutes). While occasionally very high numbers of passenger boardings could account 5 

for dwell times greater than three minutes, it is far more likely that such lengthy dwells are due to 6 

atypical circumstances, such as operator-passenger conflicts.  7 

After excluding over 25,000 records, the sample size remains quite large with 540,407 fare 8 

payment records and 99,453 dwell time records across 342 operators and 187 vehicles. 9 

  10 

ANALYSIS 11 
Descriptive analysis of the variables reveals trends and establishes context of the transit operating 12 

environment. Here, I define the variables and explore their relationships to each other. Differences 13 

in means t-tests establish whether and to what extent the variables have a statistically significant 14 

relationship to dwell time. A multivariate ordinary least squares (OLS) linear regression model is 15 

then estimated to highlight the relative importance of a TAP card for dwell and passenger service 16 

time while controlling for other factors. The OLS regression is run for the whole sample and for a 17 

subset of the sample characterized by high passenger crowding. Table 1 below shows a summary 18 

of the variables considered in the regression and a short description of their origin. 19 

 20 

  

TABLE 1 Variable Descriptions 

Variable Description 

Dwell Time A dependent variable. Time between doors opening and doors closing. 

Passenger Service 

Time 

Time necessary for boarding and fare processing per person, 

calculated as dwell time divided by boarding passengers. 

Ons (no UFS) 
The number of boarding passengers when they are greater than the 

number of UFS transactions at each stop. 

Offs (Offs > Ons) 
The number of alighting passengers when they are greater than 

boarding passengers. 

TAP Fare 
The number of UFS transactions involving a TAP card for fare 

payment or pass use. 

Non-TAP Fare The number of UFS transactions not involving a TAP card. 

TAP (Sale of Stored 

Value or Pass) 

The number of UFS transactions involving a TAP card for purchase 

of stored fare value or pass. 

Fares in Grace 

Period 

Number of UFS transactions that occurred during the door grace 

period (15 seconds after closing). 

Wheelchairs Number of boarding or alighting wheelchairs per stop. 

Bikes Number of bicycles loaded or unloaded per stop. 

Dwell Load Number of people onboard when the bus arrives at a stop. 

Peak Hour 
A dummy variable that indicates if the bus stopped during rush hour. 

(1 = Yes / 0 = No) 

Night Time 
A dummy variable that indicates if the bus stopped at night. 

(1 = Yes / 0 = No) 
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Passenger Activity 1 
The length of dwell time is highly dependent on the volume and characteristic of passenger 2 

activity. Therefore, I create as many variables as possible to control for the variety of passengers 3 

and activities that occur at each stop. 4 

  5 

Passenger Service Time 6 

The time it takes for each passenger to board the bus and pay their fare, calculated by dividing 7 

dwell time by boarding passengers. Though this variable is not included in the regression because 8 

it is calculated from the dependent variable, it serves to highlight differences in the time taken per 9 

passenger and further illustrate a given variable’s influence on dwell time.  10 

 11 

Ons (no UFS) 12 

Because boarding passengers and fare payment variables were found to be highly co-linear, this 13 

variable only counts boardings when they exceed the number of fare transactions per stop. Because 14 

APC units count boardings regardless of the door, this variable can control for fare evasion or other 15 

instances where a passenger does not interact with the UFS. 16 

 17 

Offs (Offs > Ons) 18 

Passengers alighting will not contribute to overall dwell time unless there are far more of them 19 

than boarding passengers. Therefore, alighting passengers are not included in the analysis except 20 

where the number of alighting passengers is greater than the number of boarding passengers. This 21 

is captured in the variable “Offs (Offs > Ons).” 22 

  23 

Dwell Load  24 

Passengers on a bus before it stops would affect dwell time by adding to the interior congestion 25 

that boarding passengers must wade through (24). Dwell Load is thus calculated by subtracting 26 

boarding passengers from the APC’s load count. When the result of this calculation is a negative 27 

number, Dwell Load is zero. 28 

 29 

Bikes and Wheelchairs 30 

Because the data are manually tallied by Operators and thus of unknown integrity, I aggregated 31 

loading and unloading into one variable each for bicycles and wheelchairs. 32 

 33 

Articulated Bus 
A dummy variable that indicates if the bus is articulated or not. 

(1 = Yes / 0 = No) 

Service Type 
A dummy variable that indicates the service type – Rapid or Local. 

(1 = Rapid / 0 = Local) 

Abnormal Passenger 

A dummy variable associated to a passenger service time greater than 

18 seconds, with only one boarding or alighting. 

(1 = Yes / 0 = No) 

Wide Doors 

A dummy variable that indicates whether the bus has wide doors 

(space for two people to alight simultaneously). 

(1 = Yes / 0 = No) 

Low Floor 

A dummy variable that indicates whether the bus is a low floor model 

or not. 

(1 = Yes / 0 = No) 
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Irregular Passenger Activity 1 

The data may not always account for wheelchairs or other passengers – such as the elderly – who 2 

need extra time to board, pay, and sit down. An operator may wait for an elderly passenger before 3 

closing the doors and departing. I attempt to control for these situations by creating a dummy 4 

variable based on an abnormally long dwell time (greater than 18 seconds) with one boarding or 5 

alighting passenger. 6 

 7 

Peak Hour and Night 8 

These variables control for changes in people’s behavior based on the time of day or peak hour 9 

service. Peak Hour and Night are two categorical binomial dummy variables that indicate whether 10 

or not the bus stopped during peak hour service or at night.  11 

 12 

Fare Payment 13 

TAP-Related fares are stored value cash or pass uses. Non-TAP Fares are cash fare payments or a 14 

visual inspection of a paper pass. It also includes tallies of insufficient fares or invalid transactions. 15 

These data are not excluded because they still represent a passenger interacting with the farebox 16 

in some way, thus contributing to dwell time. TAP-Sale of Pass are records of a rider purchasing 17 

a pass at the farebox. 18 

 19 

Service Characteristics 20 
Based on prior research suggesting that the type of service and vehicle configuration can also 21 

impact dwell times, I create dummy variables to describe vehicle and route information.  22 

 23 

Bus Type: Low-Floor, Articulated, and Door Width 24 

To control for the influence of vehicle configuration on dwell time, I created three dummy 25 

variables: low-floors, body type (articulated or standard), and door width. Sixty-foot articulated 26 

buses were 75% of the sample; 45’ non-articulated, low-floor buses were 24% of the sample; 40’ 27 

low-floor buses were one percent of the sample; and 40’ high-floor buses were less than one 28 

percent of the sample.  29 

 30 

Service Type 31 

A dummy variable that controls for the differences in operating environment between the Rapid 32 

720 and Local 120.  33 



Variable Descriptive Statistics 1 
After processing, the mean dwell time of both lines is 26.7 seconds per stop, and the mean 2 

passenger service time is 7.3 seconds per person (Table 2,  below). Line 720 has consistently longer 3 

dwell time, passenger service time, boarding and alighting passengers, and crowding than line 120. 4 

This may be attributed to the 720’s higher passenger volumes, as demonstrated through the original 5 

“On” and “Off” data which are included for reference in the table. High standard deviations 6 

demonstrate the extreme variability of passenger activities across both routes. 7 



TABLE 2 Variable Descriptive Statistics 

 

Routes 720 and 120 (N = 99,453) Route 720 (N = 74,723) Route 120 (N = 24,730) 

  Mean Median 
Std. 

Dev. 
Min. Max. Mean Median 

Std. 

Dev. 
Min. Max. Mean Median 

Std. 

Dev. 
Min. Max. 

Dwell Time 26.7 17 25.6 1 180 29.9 20 26.8 1 180 17.1 11 18.2 1 180 

Passenger 

Service Time 
7.3 5 11.1 0 180 7.4 4.8 11.1 0 180 6.9 5 11.1 0 179 

Ons 3.4 2 4.8 0 52 4.2 2 5.3 0 52 1.2 1 1.7 0 31 

Offs 3.6 2 4.8 0 65 4.4 3 5.2 0 65 1.3 1 1.7 0 31 

Ons (no 

UFS) 
0.7 0 1.6 0 44 0.9 0 1.8 0 44 0.4 0 0.9 0 30 

Offs (Offs > 

Ons) 
2.1 0 3.8 0 65 2.5 0 4.3 0 65 0.9 0 1.5 0 31 

Dwell Load 22.9 18 19 0 107 26.1 22 20.3 0 107 13.2 12 8.8 0 71 

TAP Fare 2.2 1 3.6 0 59 2.7 1 4 0 59 0.5 0 1 0 13 

Non-TAP 

Fare 
0.7 0 1.6 0 31 0.9 0 1.7 0 31 0.4 0 0.9 0 13 

TAP (Sale of 

Value or 

Pass) 

0 0 0.2 0 5 0 0 0.2 0 5 0 0 0.2 0 4 

Wheelchairs 0 0 0.1 0 3 0 0 0.1 0 3 0 0 0.1 0 2 

Bikes 0 0 0.1 0 3 0 0 0.1 0 3 0 0 0 0 2 

1 
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Relationship to Dependent Variable 1 
Differences in means t-tests revealed statistically significant relationships between all of the 2 

categorical variables and dwell time, except for peak hour service. While irrespective of other 3 

factors this may be true, the regression analysis finds peak hour service to have a statistically 4 

significant coefficient. 5 

Model Results, Interpretation, and Discussion 6 

TABLE 3 Model Outputs 7 
 8 

  
Total Sample 

Adjusted R-Square: .45 | N = 99,453 
Congested Conditions 

Adjusted R-Square: .49 | N = 7,327 

 B Std. Error Beta T p B 
Std. 

Error 
Beta t p 

(Constant) 11.5* 2.8  4.1 0 9.0* 3  3 0 

Ons (no UFS) 3.8* 0 0.2 100.2 0 3.1* 0.1 0.3 32.2 0 

Offs (Offs > Ons) 0.8* 0 0.1 46.4 0 1.0* 0.1 0.1 15.3 0 

TAP Fare 2.7* 0 0.4 130.1 0 3.0* 0.1 0.5 48.2 0 

Non-TAP Fare 4.6* 0 0.3 100.7 0 4.0* 0.2 0.3 26.3 0 

TAP (Sale of SV or 

Pass) 
9.0* 0.3 0.1 29 0 5.9* 1.3 0 4.5 0 

Fares in Grace 

Period 
-2.6* 0.1 -0.1 -41.3 0 -1.7* 0.2 -0.1 -6.9 0 

Wheelchairs 36.9* 0.6 0.2 65.7 0 42.5* 2.2 0.2 19.2 0 

Bikes 4.5* 0.7 0 6.9 0 1.8 2.1 0 0.9 0.4 

Dwell Load -0.01 0 0 -1.9 0.06 0.04 0 0 1.6 0.1 

Peak Hour 

(1=Yes/0=No) 
-1.0* 0.1 0 -7.9 0 0.3 0.4 0 0.6 0.6 

Night Time 

(1=Yes/0=No) 
-2.1* 0.1 0 -15.6 0 -2.1* 0.5 0 -4.4 0 

Articulated Bus 

(1=Yes/0=No) 
-3.3* 1.2 -0.1 -2.7 0 -11.9* 5 -0.1 -2.4 0 

Service Type 

(1=Rapid/0=Local) 
6.1* 1.2 0.1 5 0 14.1* 4.3 0.1 3.3 0 

Wide Doors 

(1=Yes/0=No) 
0.4 0.8 0 0.5 0.6 0.4 3.8 0 0.1 0.9 

Low Floor 

(1=Yes/0=No) 
1 2.9 0 0.3 0.7 - - - - - 

Irregular Passenger 

(1=Yes/0=No) 
24.0* 0.5 0.1 50.2 0 15.8* 2.7 0 5.8 0 

* Significant at the .001 Confidence Level 

 

Table 3 above shows the output of the linear regression model in both an aggregated and congested 9 

form. A model using the entire sample can explain 45% of the variation in dwell time. Here, a TAP 10 

card used to pay for bus fare contributed fewer seconds per person to the overall dwell than their 11 
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non-TAP counterparts. Increased volumes of passengers using TAP cards at a stop could then 1 

“reduce” dwell from the length caused by an equivalent number of non-TAP payments. Using a 2 

TAP card to purchase stored value or a multi-day pass at the farebox contributed the most time, 3 

perhaps because it is a relatively complex process. Also, the relationship may be exacerbated 4 

because the procedure is not widely published by Metro (25) so passengers or operators may be 5 

unfamiliar with the process.  6 

Interestingly, fares paid during the grace period had a negative relationship to dwell time. 7 

My interpretation is that a fare paid during the grace period amounts to a “free” boarding in terms 8 

of dwell time; a fare payment recorded after the doors have closed by definition cannot count 9 

towards an increase in dwell time. While a bus operator who waits for everyone to pay and be 10 

seated would increase dwell time under the same circumstances, I do not believe this finding 11 

should serve as motivation for an operator to close the doors as quickly as possible. Driving while 12 

people are trying to pay for a fare could cause some passengers to lose their balance, and ensuring 13 

passenger safety should remain a priority for transit agencies.  14 

Boarding passengers with no corresponding fare record contributed 3.8 seconds per person 15 

to dwell time. This finding is supported by literature that suggests an average boarding time of 4 16 

seconds per passenger (26). When alighting passengers outnumbered their counterparts, each 17 

person contributed less than a second. This is expected considering that an alighting passenger 18 

does not need to interact with the farebox and wider rear doors can often accommodate two lines 19 

of people exiting at once. 20 

Wheelchairs were associated with very large increases in dwell times (36.9 seconds), which 21 

is consistent with common operational knowledge. Lift operations require the Operator to hold the 22 

queue of boarding passengers so the ramp can open and allow the wheelchair passenger to enter 23 

or exit. If there is crowding on the bus, passengers must be moved away from the wheelchair area, 24 

causing further delay. Irregular passenger activity – when one person entering or exiting the bus 25 

took 18 seconds or more - contributed 24 seconds to dwell time.  26 

Interestingly, bicycles were not associated with similarly long increases to dwell time. This 27 

may be because loading or unloading a bicycle can be done simultaneously with passenger 28 

boarding. Unless the bicycle loading process was longer than the passenger boarding time the 29 

overall effect would be similar to that of just another person.  30 

Dwell times are shorter at night. Initially, I thought that a negative relationship would be 31 

due to the perception of safety – waiting for the bus at night may cause riders to step into the 32 

relative safety of the bus as fast as possible. However, a more realistic explanation may be that 33 

less people ride the bus at night, as sunset is well outside of peak hour service. However, this 34 

interpretation is problematic because volumes of boarding and alighting passengers are already 35 

controlled for in the regression. 36 

Rapid service was associated with longer dwell times than local service. This is consistent 37 

with the literature and is explained by the less frequent but more crowded stops associated with 38 

limited service, despite the fact that reliability and speed between stops are improved. This 39 

relationship could be exaggerated to some degree because the 720 and 120 are so extremely 40 

contrasted in terms of ridership and crowding. A dataset that contains more Rapid routes may find 41 

that not all of them are as crowded as the 720, thus diminishing relationship relationship’s strength. 42 

All of the coefficients in the regression were statistically significant except for Wide Doors, 43 

Low Floor, and Dwell Load. These findings are contrary to those in prior work. For doors and 44 

floors, this may be explained by the fact that the bus types with these configurations are a miniscule 45 

portion of the sample. The small beta values associated with both variables support this 46 
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interpretation.  Further, in this small number of cases, these vehicles were likely to have been put 1 

into service atypically. For example, a non-articulated, low-floor, wide-door standard bus pressed 2 

into service on a Rapid line (usually served by articulated vehicles) might experience longer 3 

boarding and alighting times due to very high passenger loads in comparison with more typical 4 

operating conditions. Because the prior work indicates that both low floors and wide doors are 5 

associated with improved dwell times (27), I suspect that a sample with more variety of vehicle 6 

configurations would result in statistical significance for these floor and door variables.  7 

An ordinary least squares regression model may not be the ideal model form to analyze 8 

dwell loads. For example, passenger congestion may influence dwell time only when the bus 9 

approaches seating capacity and people begin to stand. At that point, the crowding effect imposed 10 

by standing passengers upon boarding passengers would increase with each subsequent person. 11 

Thus, congestion may have an “increasingly increasing” exponential effect. Further iterations of 12 

this model should use a congestion variable similar to one developed by Milkovits, who calculated 13 

it as the square of the number of standees multiplied by the number of boarding passengers (28).  14 

Crowding 15 
While the definition of crowded conditions on a transit vehicle is not institutionally defined, I use 16 

the ratio of passengers on board to total seats (“Load Factor”) as a scale. Based on Milkovits’ 17 

methodology, passenger congestion becomes an issue when the number of people equals the 18 

number of seats, because not everyone will sit down given the opportunity (29). To see how 19 

congested conditions affect the model, I re-ran the regression after filtering the sample for records 20 

with a load factor of one or higher. The output of the model is displayed in Error! Reference 21 

source not found.. 22 

With an adjusted r-square of 0.49, this model can explain 49 percent of the variance in 23 

dwell time. Similarly to the prior model, the impact of wide doors and dwell load were not found 24 

to be statistically significant. Low floor buses were automatically excluded from the model. Peak 25 

hour service also lost significance, as did the influence of bicycles.  26 

With congestion, almost all of the variables contribute more time than in the prior model, 27 

including the TAP card. Notable exceptions include irregular passenger activity and articulated 28 

bus. An explanation for the former may be that there are less instances of such passengers in the 29 

highly constrained sample. Articulated buses reduce dwell time by almost 12 seconds in this 30 

model, whereas in the previous model the reduction was a more modest three seconds, highlighting 31 

these buses’ ability to effectively deal with crush loads. This finding suggests that higher-capacity 32 

articulated buses are well-suited for managing dwell times given crowding. 33 

Importantly, this model shows how on-board crowding can exacerbate dwell times. 34 

Variables which contribute to shorter dwells are less effective, while those that are associated with 35 

longer dwell times are magnified. From this, I infer that heightened crowding inhibits some of the 36 

benefits that the TAP card offers in terms of dwell time – however it doesn’t totally eradicate them. 37 

Research from prior work achieved higher explanatory power than these models, perhaps 38 

due to heightened specificity. For example, Milkovits estimated separate models for each door, on 39 

each bus, in crowded and open conditions (30). In my analysis, the model is generalized across all 40 

doors and bus types. Using one model to explain the variances across two very different routes and 41 

vehicle configurations may be responsible for a loss of explanatory power. A future analysis that 42 

includes all Metro bus routes and a more specified model may improve the model’s power. 43 

 44 
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CONCLUSION 1 
The goal of this research is to determine if TAP cards had a statistically significant impact on the 2 

dwell times of busses in Los Angeles, using automatically generated data provided by Metro. A 3 

review of prior work established the relationships between a variety of determinants and dwell 4 

time, including passenger volumes, service type, vehicle configuration, and fare payment 5 

procedures. 6 

Pre-processing of the data focused on removing outliers. Despite these exclusions, variance 7 

of dwell time along predicting variables – particularly passenger crowding – was high. Numerous 8 

differences-in-means tests found that, individually, all but one of the variables had statistically 9 

significant differences in mean dwell time. A regression analysis then highlights the influence of 10 

each variable relative to each other. 11 

The linear regression model suggests that, all things held constant, a person paying fare 12 

with a TAP card contributes less time to dwell than other methods of payment with statistical 13 

significance. While two seconds of dwell time reduction per boarding may not sound like much, 14 

consider this: If 100,000 current customers (or about 20% of current non-TAP paying customers) 15 

were to switch to TAP cards, Metro buses would spend about 56 fewer hours per day waiting at 16 

bus stops. Less time at stops means higher average bus speeds, and higher bus speeds means lower 17 

headways and faster travel times. Thus, the “two second solution” may be more significant for 18 

improving Metro transit operations than it might at first appear. 19 

Importantly, however, the TAP card begins to contribute more – rather than less – time to 20 

delay at stops in crowded conditions, suggesting that the benefits of TAP vis-à-vis dwell time are 21 

diminished with high passenger volume. Considering that smart card fare payment systems are 22 

incredibly expensive to install and operate, it would behoove transit planners to evaluate them as 23 

a tool in the transit system design toolbox, and not the golden ticket.  24 



Shockley, Salinas, Taylor  17 

 

 

REFERNCES 

1. Transit Cooperative Research Program. Transit Capacity and Quality of Service Manual. 1 

2nd Edition. Transportation Research Board. Print. 1-18. 2 

2. Transit Capacity and Quality of Service Manual, 4-95. 3 

3. Transit Capacity and Quality of Service Manual, 1-18. 4 

4. Transit Capacity and Quality of Service Manual, 4-4. 5 

5. Transit Cooperative Research Program. Transit Capacity and Quality of Service Manual. 6 

2nd Edition. Transportation Research Board. Print. 4-94 - 4-95. 7 

6. Milkovits, Martin. “Modeling the Factors Affecting Bus Stop Dwell Time.” Transportation 8 

Research Record 2072 (2008): 125–130. Print. 9 

7. Lin, Tyh-Ming, and Nigel Wilson. “Dwell Time Relationships for Light Rail Systems.” 10 

Transportation Research Record 1361 (1992): 287–295. Print 11 

8. Rajbhandari, Rajat, Steven Chien, and Janice Daniel. “Estimation of Bus Dwell Times with 12 

Automatic Passenger Counter Information.” Transportation Research Record 1841 (2003): 13 

120–127. Print 14 

9. Deuker, Kenneth et al. “Determinants of Bus Dwell Time.” Journal of Public 15 

Transportation 7.1 (2004): 21–40. Print 16 

10. Fernández, Rodrigo et al. “Influence of Platform Height, Door Width, and Fare Collection 17 

on Bus Dwell Time.” Transportation Research Record 2143 (2010): 59–66. Print. 18 

11. Daamen, Winnie, Yu-chen Lee, and Paul Wiggenraad. “Boarding and Alighting 19 

Experiments - Overview of Setup and Performance and Some Preliminary Results.” 20 

Transportation Research Record 2042 (2008): 71–81. Print. 21 

12. Fernández, Rodrigo et al. “Influence of Platform Height, Door Width, and Fare Collection 22 

on Bus Dwell Time.” Transportation Research Record 2143 (2010): 59–66. Print. 23 

13. Fernández, Rodrigo et al. “Influence of Platform Height, Door Width, and Fare Collection 24 

on Bus Dwell Time.” 59. 25 

14. Fernández, Rodrigo et al, 31. 26 

15. Aashtiani, Hedayat, and Hamid Iravani. “Application of Dwell Time Functions in Transit 27 

Assignment Model.” Transportation Research Record 1817 (2002): 88–93. Print 28 

16. Watry, Duncan. 22 Jan. 2015. Phone 29 

17. Chisholm, Russell. 22 Jan. 2015. Phone 30 

18. Transit Cooperative Research Program. Transit Capacity and Quality of Service Manual. 31 

2nd Edition. Transportation Research Board. Print. 4-2. 32 

19. Iseki, Hiroyuki et al. Evaluating the Costs and Benefits of Transit Smart Cards. California 33 

PATH, 2008. Print. California PATH Research Report 34 

20. Iseki, Hiroyuki et al. Evaluating the Costs and Benefits of Transit Smart Cards, 10. 35 

21. Fernández, Rodrigo et al. “Influence of Platform Height, Door Width, and Fare Collection 36 

on Bus Dwell Time.” Transportation Research Record 2143 (2010): 59–66. Print. 64. 37 

22. Milkovits, Martin. “Modeling the Factors Affecting Bus Stop Dwell Time.” Transportation 38 

Research Record 2072 (2008): 125–130. Print. 39 

23. Fernández, Rodrigo et al. “Influence of Platform Height, Door Width, and Fare Collection 40 

on Bus Dwell Time.” 41 

24. Milkovits, Martin. “Modeling the Factors Affecting Bus Stop Dwell Time.” 128. 42 

25.  “Reloading Your Card” http://taptogo.net/replenish.php - purchase at the farebox is not a 43 

listed option as of this writing. Nevertheless, it is possible with the current hardware 44 

configuration. 45 



Shockley, Salinas, Taylor  18 

 

 

26. Transit Cooperative Research Program. Transit Capacity and Quality of Service Manual. 1 

2nd Edition. Transportation Research Board. Print. 4-2. 2 

27. Fernández, Rodrigo et al. “Influence of Platform Height, Door Width, and Fare Collection 3 

on Bus Dwell Time.” 59. 4 

28. Milkovits, Martin. “Modeling the Factors Affecting Bus Stop Dwell Time.” Transportation 5 

Research Record 2072 (2008): 125–130. Print. 6 

29. Milkovits, Martin. “Modeling the Factors Affecting Bus Stop Dwell Time. 7 

30. Milkovits, Martin. “Modeling the Factors Affecting Bus Stop Dwell Time.” Transportation 8 

Research Record 2072 (2008): 125–130. Print. 9 


